

4/15/18

If Earth

could

change,

change.

species could

2. INFLUENCES ON DARWIN (CONTINUED)

- B. Geologist (Charles) Lyell Earth changed over time
- C. Geologist- (James) Hutton- gradualism
- D.Punctuated equilibrium (1972) due to catastrophic changes

5. CAUSES OF EVOLUTION

A. Natural selection- better suited organisms survive to reproduce- frequency of phenotypes shift (see last sentence page 483 *)

* "Natural selection operates on individual organisms, but the changes it causes in allele frequency show up in the population as a whole"

Clip #6 Why does evolution matter now?

5. CAUSES OF EVOLUTION

B. Genetic drift- random change NOT due to natural selection- 2 examples (Bottleneck & Founders)

BOTTLENECK EFFECT: A FEW SURVIVE A NATURAL DISASTER- LESS GENETIC DIVERSITY IN NEW GENERATION

7. NATURAL SELECTION-WHY?

clip #4

How does Evolution really work?

- A. Genetic Variation
- B. Overproduction of offspring
- C. Struggle to survive- competition
 - A trait that makes an organism more suited is called an adaptation
- D. Differential reproductive success

4/15/18

8. FITNESS- A MEASURE OF AN INDIVIDUAL'S HERITABLE CONTRIBUTION TO FUTURE GENERATIONS

- A. It's NOT.... being the biggest (smartest, fastest, most/least colorful)
- B. It IS... leaving the most descendants
- C. Sexual selection- select mate based on heritable traits
- D. Mating successfully*= winning (*producing live offspring that can reproduce)
- E. Adaptations- increase fitness

MORE ON FITNESS: CAMOUFLAGE- IMPORTANT TO SOME, NOT OTHERS

• Evolution of camouflage

Survival of the fit enough- you don't have to be "faster than the bear"

Hemoglobin Comparison					
Clip 5 Did humans evolve? Relative vs		Species	Amino Acid Differences from Human Hemoglobin Protein		
ancestor.		Gorilla	1		
		Rhesus monkey	8		
		Mouse	27		
		Chicken	45		
		Frog	67		
PL HALL VOI	11 11 12	Lamprey	125		
	1111	111 4-12/1	111-1-1-1		

II. NATURAL SELECTION PATTERNS- DRIVEN BY FITNESS

C. Disruptive selection- outer ends have higher fitness

II. NATURAL SELECTION PATTERNS- DRIVEN BY FITNESS

D. directional- phenotypes shift in one direction

12. REPRODUCTIVE ISOLATION MECHANISM THAT LEAD TO SPECIATION (C, D, & E ARE PRE-ZYGOTIC)

- A. organisms can't or won't reproduce
- B. over time, the "isolation" leads to speciation & breeding between the 2 groups (interbreeding) stops
- C. Behavioral isolation- rituals differ
- D. Geographic isolation- physical barrier

12. REPRODUCTIVE ISOLATION MECHANISM THAT LEAD TO SPECIATION (C, D, & EARE PRE-ZYGOTIC)

- E. Temporal Isolation- timing is wrong
- F. Post- zygotic- can mate, but offspring are not born alive or not fertile (or their offspring are nonviable or infertile)

C.Vestigial structures- remnant from a once useful organ, appendix human, pelvic bone in whale	A. Homologous structures- similar structure, different function, arm human/ wing bat, common ancestor embryology	9.Evidence- describe and	B.Analogous structures- perform a similar function, no common ancestor, wing bat/wing fly dolphin/shark
	C.Vestigial structures- remnant from a once useful organ, appendix human, pelvic bone in whale	give examples	D. Molecular Biology comparing nucleotide sequences how closely related 2 organisms are: insulin, hemoglobin

