This guide explains what each part of your student’s score report means. The following pages show a sample report for a student named Jolyne Smith. Your student’s scores and progress are in a report like Jolyne’s.

This guide applies to score reports for the following high school subjects:
- Algebra I
- American Government
- American History
- Biology
- English Language Arts I
- English Language Arts II
- Geometry
- Integrated Mathematics I
- Integrated Mathematics II

Disclaimer: The data in the Family Report sample are for display purposes only and do not represent actual results. The student’s name on the sample is fictitious, and any similarity to an actual student name is purely coincidental.
A description of each area appears in the far left column and describes tasks that students who are proficient in each area are able to perform.

The **What These Results Mean** section describes your student's general understanding of the content in this area based on his or her ability level.

The **Next Steps** recommendations are based on your student's overall subject performance level. This section provides information on activities you can do with your student to build on strengths and alleviate weaknesses in the subjects assessed.

What are your child's strengths and weaknesses in Algebra I?

<table>
<thead>
<tr>
<th>Category</th>
<th>Jolyne Scored Near Proficient</th>
<th>Jolyne Scored Below Proficient</th>
<th>Jolyne Scored Near Proficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Functions</td>
<td>Students analyze and compare functions represented in different ways. Students interpret and compare linear, quadratic and exponential functions and the situations they model. Students identify and explain important details of functions.</td>
<td>Students create and solve equations and inequalities that describe relationships in real-world problems. They solve equations with one variable and systems of equations with two variables. Students can explain each step.</td>
<td>Students analyze, make sense of, and apply mathematics to solve real-world problems. They draw, justify, and communicate conclusions or inferences supported by logical and mathematical thinking.</td>
</tr>
<tr>
<td></td>
<td>WHAT THESE RESULTS MEAN Your child graphs quadratic functions, interprets key features of graphs, compares properties of functions and differentiates between linear and exponential functions from real-world contexts.</td>
<td>WHAT THESE RESULTS MEAN Your child analyzes, makes sense of and applies mathematics to solve real-world problems. They draw, justify, and communicate conclusions or inferences supported by logical and mathematical thinking.</td>
<td>WHAT THESE RESULTS MEAN Your child solves most routine real-world problems mathematically. Your child's thinking relates skills and concepts to mathematical principles.</td>
</tr>
<tr>
<td>Number, Quantities, Equations and Expressions</td>
<td>NEXT STEPS With your child, use dynamic graphing programs to explore the behavior of linear, quadratic and exponential functions by changing one coefficient or constant to see the effect on graphs.</td>
<td>NEXT STEPS With your child, explore how the multiplication of binomials is related to multiplication of two-digit numbers, such as patterns in squaring two-digit numbers ending in 5.</td>
<td>NEXT STEPS Your child needs to use more mathematical terms, symbols and models to solve and explain real-world problems.</td>
</tr>
<tr>
<td>Statistics</td>
<td>Students summarize and interpret one- and two-variable data. They represent the data using box plots, line plots and histograms, two-way tables and scatterplots. They can identify and express trends in two-variable data using linear models.</td>
<td>Students describe the median and mean of two different data sets but may struggle summarizing categorical data using two-way frequency tables or fitting a linear function to data.</td>
<td>Students can analyze and use data to make conclusions or inferences supported by logical and mathematical thinking.</td>
</tr>
<tr>
<td></td>
<td>WHAT THESE RESULTS MEAN Your child describes the median and mean of two different data sets but may struggle summarizing categorical data using two-way frequency tables or fitting a linear function to data.</td>
<td>WHAT THESE RESULTS MEAN Your child describes the median and mean of two different data sets but may struggle summarizing categorical data using two-way frequency tables or fitting a linear function to data.</td>
<td>WHAT THESE RESULTS MEAN Your child can analyze and use data to make conclusions or inferences supported by logical and mathematical thinking.</td>
</tr>
<tr>
<td>Modeling and Reasoning</td>
<td>NEXT STEPS With your child, discuss examples of two-variable data that seem strongly correlated and what the variables have in common that leads to an appearance of causation (ice cream and sunscreen sales).</td>
<td>NEXT STEPS With your child, discuss examples of two-variable data that seem strongly correlated and what the variables have in common that leads to an appearance of causation (ice cream and sunscreen sales).</td>
<td>NEXT STEPS Your child needs to use more mathematical terms, symbols and models to solve and explain real-world problems.</td>
</tr>
</tbody>
</table>
Frequently Asked Questions

What is the purpose of Ohio’s State Tests?
State achievement tests tell us how well our students are performing in the knowledge and skills outlined in Ohio’s Learning Standards. These tests help guide and strengthen future teaching so we can be sure that we are preparing our students for long-term success in school, college, careers and life. Test results also allow citizens to know how their local schools are performing compared to others around the state.

How were the tests developed?
Test development is an extensive, ongoing process for ensuring that state tests are valid and appropriate measures of student knowledge and skills.

The Ohio Department of Education worked with Ohio educators and the American Institutes for Research to develop the state tests. Content advisory committees, as well as fairness and sensitivity committees discussed whether test items were accurate and fair, were suitable for the course and measured an aspect of Ohio’s Learning Standards.

After the tests were built, another group of educators serving on a standard-setting committee recommended cut scores for five performance levels. The State Board of Education approved these recommendations. Find all performance standards and performance-level descriptors on the reporting resources page of the Ohio’s State Tests portal.

What if there are blanks or no score on the score report?
If your student’s test was invalidated, no scores will appear on the report. In addition, the section about student strengths and weakness detailed on page 3 of this guide will say “No data available. Talk with your student’s teacher if you have questions.” Please contact your student’s school if you have a question or concern about these statements.

Glossary of Terms/Definitions

Content Areas—Content areas are also known as subjects (for example, English language arts, mathematics, science, and social studies).

Ohio’s Learning Standards—Ohio’s Learning Standards define what students should know and be able to do at each grade level. Find information about Ohio’s Learning Standards on the Ohio Department of Education website at education.ohio.gov.

Performance Levels—There are five performance levels of achievement in each subject area. Three of the performance levels (Advanced, Accelerated and Proficient) are above the “passing” score of 700. Two performance levels (Basic and Limited) are below the “passing” score. The accelerated level of performance suggests that a student is on track for college and career readiness. Each subject area has its own specific descriptions of each of these performance levels, called Performance Level Descriptors. Performance Level Descriptors for all content areas may be found on the reporting resources page of the Ohio’s State Tests portal.

Reporting Categories—Each test has three to five reporting categories. Reporting categories are the major areas tested within each subject. For example, areas for integrated mathematics I are Geometry, Statistics, Algebra, Number & Quantity Functions, and Modeling and Reasoning.

Reporting Category Indicators—The test results present groups of similar skills or learning standards measured on the test in reporting categories. For example, a reporting category within integrated mathematics I would be statistics. Student performance on statistics or other areas within the reporting category is reported with an indicator. These indicators are below proficient, near proficient and above proficient.

Scores—Raw scores (points earned) cannot be compared across different test forms, so they are converted to scaled scores for reporting purposes. Scaled scores may be compared across different administrations of the same test. For example, scaled scores for students who took the English language arts I state test this year may be compared with those of students who took it last year. Scaled scores are not comparable across different subjects.